A second-order sequential optimality condition associated to the convergence of optimization algorithms

نویسندگان

  • Roberto Andreani
  • Gabriel Haeser
  • Alberto Ramos
  • Paulo J. S. Silva
چکیده

Sequential optimality conditions have recently played an important role on the analysis of the global convergence of optimization algorithms towards first-order stationary points, justifying their stopping criteria. In this paper we introduce a sequential optimality condition that takes into account second-order information and that allows us to improve the global convergence assumptions of several second-order algorithms, which is our main goal. We also present a companion constraint qualification that is less stringent than previous assumptions associated to the convergence of second-order methods, like the joint condition Mangasarian-Fromovitz and Weak Constant Rank. Our condition is also weaker than the Constant Rank Constraint Qualification, which associated it to the convergence of second-order algorithms. This means that we can prove second-order global convergence of well stablished algorithms even when the set of Lagrange multipliers is unbounded, which overcomes a limitation of previous results based on MFCQ. We prove global convergence of well known variations of the augmented Lagrangian and Regularized SQP methods to second-order stationary points under this new weak constraint qualification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential Optimality Conditions and Variational Inequalities

In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...

متن کامل

Stabilized sequential quadratic programming for optimization and a stabilized Newton-type method for variational problems

The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve fast convergence despite possible degeneracy of constraints of optimization problems, when the Lagrange multipliers associated to a solution are not unique. Superlinear convergence of sSQP had been previously established under the strong second-order sufficient condition for op...

متن کامل

Stabilized Sequential Quadratic Programming for Optimization and a Stabilized Newton-type Method for Variational Problems without Constraint Qualifications∗

The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve fast convergence despite possible degeneracy of constraints of optimization problems, when the Lagrange multipliers associated to a solution are not unique. Superlinear convergence of sSQP had been previously established under the secondorder sufficient condition for optimality...

متن کامل

A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms

We develop a new notion of second-order complementarity with respect to the tangent subspace related to second-order necessary optimality conditions by the introduction of so-called tangent multipliers. We prove that around a local minimizer, a second-order stationarity residual can be driven to zero while controlling the growth of Lagrange multipliers and tangent multipliers, which gives a new...

متن کامل

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015